Basics of EDS – Part 2

2022.11.10
Basics, Part 2


Hello, Zeborah Dazzle, PT, WWF here. I am the spokes-zebra and patient educator for Good Health Physical Therapy and Wellness.


As some of you know, while I am a physical therapist who treats all kinds of problems, including all kinds of bone and muscle problems, my special interest is Ehlers-Danlos Syndrome (EDS) and Hypermobility Spectrum Disorder (HSD). Sometimes it is wise to pause and go back to basics. That is what I will focus on with this post.


By the way, in the last post while considering the types of Ehlers-Danlos, I forgot to mention that it occurs across all ethnic and racial backgrounds. And for some patients, inheritance is dominant, meaning that only one parent can pass it to the kids (autosomal dominant) and in some recessive, meaning both parents would have to have the gene to pass it on (autosomal recessive).


What is Hypermobility Spectrum Disorder and How is it Different from Ehlers-Danlos?

In the last post, we talked about how 12 of the 13 types of Ehlers-Danlos Syndrome have genetic tests, but that the most common, hypermobile Ehlers-Danlos Syndrome (hEDS, 80-90% of all EDS) does not. This diagnosis is done by a set of criteria. However, there are many patients who may be generally hypermobile but do not fit the formal criteria for hEDS. These patients are then diagnosed with Hypermobility Spectrum Disorder (HSD), which it should be noted does not mean that they have less pain or fewer symptoms than someone with the diagnosis of hEDS – but more on that later.


At this point in writing this, I see that I have already used the word “hypermobility” many times and used it many times in the last blog post too. So, I think it would be wise to consider what this means.


A joint that is too flexible without adequate soft tissue support is hypermobile.


All joints in the body exist in a balance between flexible and inflexible, or said another way, stable and unstable. Some joints are naturally more stable than others with each joint having its own best level of stability. There are a number of factors which hold the bones together so they can do their job. One factor is the shape of the bones. For example, the bones of the skull are shaped like puzzle pieces which fit together closely. A slight suction between smooth joint surfaces which are lubricated with joint fluid (“synovial fluid”) is another factor which holds bones together — like a suction cup on a windowpane but less strong. By far though, the greatest support to the joints is the soft tissue support around it such as the ligaments and the surrounding muscles. Therapists think of the optimal state of a joint as being flexible and strong.


When a joint is unstable because the soft tissues are broken (such as a severe sprain) or too stretchable or too fragile, this leads to too much mobility at the joint surfaces. This is not just a problem of HSD and hEDS. Even in people with normal connective tissue, sprains, strains and sometimes aging can leave joints too mobile. And weak muscles can also cause local problems to joints. Working with this kind of problem is daily fare for physical therapists. But in HSD and hEDS multiple joints of the body if not all are affected by faulty connective tissue not just one or two localized joints.


So, HSD is an umbrella diagnosis for all patients who are excessively mobile in most or all joints of their body. Like hEDS this is thought to be inherited, but no specific genetic mutation is known. hEDS is under the umbrella of the hypermobility spectrum disorder diagnosis, just more specific.


What does the word “spectrum” mean in Hypermobility Spectrum Disorder?


We say that patients with HSD and hEDS are on a spectrum because of the huge variation in symptom levels they can experience. Thinking back to high school, you may remember a thing called a “bell curve”, also sometimes called a normal distribution. This is a graph of how often something happens or how often a specific variable shows up in a data group. With HSD and hEDS, some patients have very few or even no symptoms. In a graph of how many patients with HSD or hEDS have symptoms of different severity, these people would be on the left, mild, side of the curve. Where patients with many or severe problems would be on the right, severe side. Those with moderate problem levels would be the greatest in number and near the average center.

According to the Ehlers-Danlos Society, the occurrence of HSD in the population is about 1/500. This means that out of 332 million people in the US, about 664,000 or .2% are hypermobile. I suspect this estimate is low due to under diagnosing.


I am trying to keep these blog posts bite-sized, meaning about two pages. So, I will continue in the next post and consider the kinds of symptoms that HSD and hEDS can cause, and also what some of the principles of treatment are.


Until then, Cheers! Zebbie


P.S. More information is available at the Ehlers-Danlos Society website. I particularly like this downloadable PDF overview: https://ehlers-danlos.com/wp-content/uploads/EDS_Awareness_2017_v3_img_2021.pdf


Thanks to Dr. Mark Melecki, PT for his assistance in writing this blog. (It is very challenging to type with hooves rather than fingers. Thanks Mark!)

Taming the Zebra

Website: tamingthezebra.org

Mailing List: https://www.tamingthezebra.org/join-the-email-list

Excerpt from: Taming the Zebra – It’s Much More than Hypermobility: The Definitive Physical Therapy Guide to Managing HSD/EDS, Volume 1 Systemic Issues and General Approach 

(Due out Winter of 2023)

CHAPTER 2

 Understanding Connective Tissue

The Ehlers-Danlos Syndromes (EDS) are described as a group of heritable heterogenous connective tissue disorders, meaning different genetic variations are present with different classifications of EDS. EDS is not simply a diagnosis of joint hypermobility, but a reference to a connective tissue disorder throughout the body, involving many different systems. Presentation with each patient will be determined by the type of genetic variation identified along with genetic expression, which is further discussed below.

The human body is made up of nervous, muscular, epithelial (skin), and connective tissue. Connective tissue can be found in the nervous and muscular tissue and adjacent to the epithelial tissue. Connective tissue plays many different roles for us within our bodies (Figure 2.1). It helps package and compartmentalize areas of the body by providing support or protection. It can bind and separate organs or other tissues. Connective tissue also plays a role in protection, defense, and repair. It aids in scar tissue formation, inflammation, and defense against invading bacteria or other substances through some of its molecular components. It acts as insulation, storing energy as adipose tissue (fat). It also assists in transportation throughout the body. Blood is a connective tissue that delivers oxygen and nutrients throughout the body. Blood is considered a connective tissue because it consists of blood cells surrounded by a fluid matrix called blood plasma. Fascia is a connective tissue creating a continuous system throughout the body, becoming a means of directing and transferring mechanical forces within the body. If, however, the connective tissue is dysfunctional, this can lead to the transfer of inefficient forces and lead to imbalances and/or restrictions. It is thought that the connective tissue is the medium for acupuncture treatment and explains how needles affect organs from afar. Myofascial release experts purport that memory can be stored in the guarding patterns of the tissue, explaining some chronic, non-responsive fascial dysfunction. Connective tissue is complex and expansive within the human body.

Roles of Connective Tissues Throughout the Body
Packaging and Compartmentalizing
Protection, Defense, and Repair
Insulation
Transfer of Mechanical Forces Throughout the Body
Figure 2.1 Connective tissues assists with many different functions and roles within the human body. A connective tissue disorder can cause issues in any of these roles listed.

Connective tissue is the most abundant tissue in our body, found just about everywhere. It is found in fibrous tissues, fat, cartilage, bone, bone marrow, tendons, the wall of the gastrointestinal system, skin, and blood vessel walls. It also encloses the brain and spinal column. Connective tissue is made up of many different components, primarily elastin, collagen fibers, ground substance (gelatinous material that fills the spaces between fibers and cells), and immune cells. Those collagen fibers along with proteoglycans (protein) and glycosaminoglycans (polysaccharide compound) together make up the extracellular matrix along with other compounds. The distribution and ratio of each of these in a particular make-up of connective tissue will determine what the connective tissue looks like (i.e. fibrous versus ligamentous). The function of the connective tissue is determined by the protein composition of the extracellular matrix (ECM). The immune cells reside in the extracellular matrix. 

Figure 2.2 Connective tissue within the human body makes up cartilage, tendon, bone, adipose tissue, and ligaments. Connective tissue surrounds the blood vessel walls, muscles, and nerves, also influencing these systems as well.

What is the difference between Kinesio®tape and athletic tape?

Cueing vs stability
Kinesio® tape is stretchy compared to athletic and Leukotape®. Each are great and beneficial, but for very different purposes.

The stretchy quality of Kinesio® tape provides cues for better joint alignment and position, muscle activation, and posture. As your body moves into these positions, the tape will stretch, giving you a cue to reduce the tension of the tape and return to the better posture and alignment. The stretch of the tape can also be used to help lift the skin, allowing more blood flow. It has been shown to help reduce swelling and help with soft tissue healing.

Other kinds of more traditional tape are used for stabilization. Because of its less stretchy nature, athletic tape will prevent movement into poor positions all together, not allowing you to move out of a certain alignment.

How do you know if Kinesio® tape or athletic tape would be best for you?

Kinesio® tape to help prevent elbow hyperextension

Leukotape® to keep the arch lifted and prevent twisting the ankle

The best way to know would be to see a physical therapist to assess what is happening with your posture or joint alignment. We are trained in the different techniques, patterns, and ways to cut and apply the tape to provide the best benefit and proper purpose of the tape.

For a quick answer though, if you are looking for more stability like a temporary brace, then athletic or Leukotape® are best. If you are trying to retrain yourself to use the right muscles and maintain a certain posture or alignment, then Kinesio® tape is best.

 

 

We recommend seeing a physical therapist for the other more medical applications of Kinesio® tape such as to reduce swelling or increase blood flow to an injured area for healing.

A physical therapist at Good Health Physical Therapy & Wellness is always happy to provide more information or assess your needs to reduce or prevent pain and injury

Oregon is a direct access state for physical therapy. What does this mean for you?

Many people think that you need a doctor’s referral to get specialized care. People often see their primary care physician first for any ailment, and your doctor directs you to the right specialist for further investigation and diagnosis. Recently, with rising healthcare costs and a change in physical therapy training, many states now allow direct access. This means if you have a condition involving your muscles or joints you have the right to see a physical therapist (a musculoskeletal specialist) without a referral from your doctor. This can depend on your insurance policy, however. While this is not a federal law, several states have some version of direct access. Oregon is one of them!

 

According to a 2016 article in the American Physical Therapy Association’s magazine, PT in Motion, Oregon is one of several states that provide unrestricted direct access. A study done by the American Physical Therapy Association has shown the same quality of care, no adverse events and lower cost for patients who saw a physical therapist through direct access compared to those who went to a primary care provider first.

 

Physical therapists are trained to rule in and rule out red flag signs and symptoms. If we are in doubt about a diagnosis, then we refer you back to a medical doctor to receive the appropriate care. More often, though, people see their doctor for a muscle or joint condition and are then referred to a physical therapist. Direct access allows you to skip a step, make one less appointment, save money, and go directly to the person who can treat your symptoms. You wouldn’t go to a physical therapist first for a sore throat, and you shouldn’t go to your primary care provider first for a pulled muscle.

 

So, if you think you have a musculoskeletal injury, see your physical therapist first! Start by calling our office (503)292-5882 and our helpful staff will get you an appointment. They can check your insurance company’s requirements/coverage or explain more about our reasonable cash pay rates.

 

Chie Tadaki, PT, DPT